Select Your Style

Choose View Style

  • Full
  • Boxed

Choose Colour style

  • skyblue
  • green
  • blue
  • coral
  • cyan
  • eggplant
  • pink
  • slateblue
  • gold
  • red

ΓΕΝΕΤΙΚΗ

ΓΕΝΕΤΙΚΗ

«Η νίκη επί των γονιδίων»

Η Γενετική είναι εκείνη που επιδιώκει να καταλάβει πώς η γενετική ποικιλομορφία σχετίζεται με την ανθρώπινη υγεία και την ασθένεια.

Eδώ υπεισέρχεται ο ρόλος της επιγενετικής: ενώ ένας οργανισμός μεγαλώνει και αναπτύσσεται, προσεκτικά συντονισμένες χημικές αντιδράσεις ενεργοποιούν και απενεργοποιούν κομμάτια του γονιδιώματός του, επιφέροντας αλλαγές που πραγματοποιούνται στην κατάλληλη θέση, την κατάλληλη στιγμή.

Η επιστήμη της επιγενετικής μελετά ακριβώς αυτές τις αλλαγές και τους παράγοντες που τις ελέγχουν. Είναι χαρακτηριστικό ότι το περιοδικό Der Spiegel αναφερόμενο στην επιγενετική, κυκλοφόρησε στις 09/08/2010 με τον τίτλο «Η νίκη επί των γονιδίων» στο εξώφυλλό του.

Γιατί με αφορά Services

Όταν ακούμε για «γενετική», συνήθως σκεφτόμαστε εργαστήρια και ερευνητές και διαδικασίες που λίγο επηρεάζουν την καθημερινότητά μας. Η αλήθεια, όμως, είναι πολύ διαφορετική: η γενετική είμαστε εμείς, η ζωή μας, η ανάπτυξή μας, η συμπεριφορά μας. Είναι, δηλαδή, κάτι που μας αφορά άμεσα και που η κλινική εφαρμογή του μπορεί να συμβάλει στην καλή υγεία μας.

Γενετική είναι η μελέτη των γονιδίων, της κληρονομικότητας και της βιοποικιλότητας στους ζωντανούς οργανισμούς. Οι γενετικές διαδικασίες λειτουργούν σε συνεργασία με το περιβάλλον ενός οργανισμού και επηρεάζουν την ανάπτυξη και τη συμπεριφορά του. Τα γονίδια είναι συγκεκριμένες αλληλουχίες βάσεων του DNA, τα οποία περιέχουν αποθηκευμένη τη γενετική πληροφορία κάθε οργανισμού.

Ωστόσο η γενετική από μόνη της αδυνατεί να εξηγήσει πώς λειτουργεί, αναπαράγεται και εν γένει ανταποκρίνεται στο περιβάλλον – εσωτερικό και εξωτερικό – ένα κύτταρο, ιστός, όργανο και, σε γενικότερη κλίμακα, ο κάθε οργανισμός.

Η Γενετική είναι εκείνη που επιδιώκει να καταλάβει πώς η γενετική ποικιλομορφία σχετίζεται με την ανθρώπινη υγεία και την ασθένεια. Και εδώ υπεισέρχεται ο ρόλος της επιγενετικής: ενώ ένας οργανισμός μεγαλώνει και αναπτύσσεται, προσεκτικά συντονισμένες χημικές αντιδράσεις ενεργοποιούν και απενεργοποιούν κομμάτια του γονιδιώματός του, επιφέροντας αλλαγές που πραγματοποιούνται στην κατάλληλη θέση, την κατάλληλη στιγμή.  Η επιστήμη της επιγενετικής μελετά ακριβώς αυτές τις αλλαγές και τους παράγοντες που τις ελέγχουν. Είναι χαρακτηριστικό ότι το περιοδικό Der Spiegel αναφερόμενο στην επιγενετική, κυκλοφόρησε στις  09/08/2010 με τον τίτλο «Η νίκη επί των γονιδίων» στο εξώφυλλό του.

Eπιγενετική, λοιπόν, είναι η μελέτη των αναστρέψιμων κληρονομήσιμων αλλαγών στη λειτουργία των γονιδίων, που εμφανίζονται χωρίς κάποια αλλαγή στην αλληλουχία του πυρηνικού DNA. Είναι η διαδικασία της επίδρασης στη δράση ενός γονίδιου χωρίς να αλλάζει το ίδιο το DNA του γονιδίου. Το επιγένωμα είναι η γενική επιγενετική κατάσταση ενός κυττάρου.   

Ο ρόλος της μεταβολομικής

Στο πλαίσιο των παραπάνω, σημαντικός είναι ο ρόλος της μεταβολομικής ανάλυσης, η οποία παρέχει μια λειτουργική ματιά σε έναν οργανισμό, όπως αυτή καθορίζεται από το σύνολο των γονιδίων του, του RNA του, των πρωτεϊνών του και των περιβαλλοντικών παραγόντων, όπως π.χ. η διατροφή και οι φαρμακευτικές αγωγές. Η ανάλυση αυτή στοχεύει να αποκαλύψει πώς επάρκειες και ανεπάρκειες σε μικροθρεπτικά συστατικά μπορούν να επηρεάσουν τις επιγενετικές πολλαπλές βιολογικές διεργασίες, οδηγώντας σε διατήρηση της υγείας ή σε εξέλιξη μιας ασθένειας.

Επιγενετική Services

Ολόκληρο το DNA για έναν οργανισμό επαναλαμβάνεται σχεδόν σε κάθε κύτταρο του σώματος. Μέσα σε κάθε κύτταρο, όμως, τα γονίδια δρουν ευδιακρίτως, με ιδιαιτερότητα που επηρεάζεται από περιβαλλοντικούς και επιγενετικούς παράγοντες. Μέσω της δραστηριότητας των γονιδίων κατασκευάζονται οι πρωτεΐνες, μεταξύ άλλων και με τη μορφή ορμονών, παραγόντων αύξησης και άλλων ρυθμιστικών μορίων. Και οι πρωτεΐνες επιδρούν στη δραστηριότητα των γονιδίων.

Εκτός από τις πρωτεΐνες, οι επιγενετικές επιδράσεις προκαλούνται και από το RNA. Υπάρχουν αυξανόμενα στοιχεία από μελέτες, τόσο σε ποντίκια όσο και στον άνθρωπο, ότι τα αποτυπωμένα γονίδια μπορούν να επηρεάσουν τη συμπεριφορά και την νοητική λειτουργία.

Οι επιγενετικοί μηχανισμοί επηρεάζονται από διάφορους παράγοντες, στους οποίους συμπεριλαμβάνονται: η εμβρυϊκή ανάπτυξη, η βρεφική και παιδική ηλικία, τα χημικά από το περιβάλλον, τα ναρκωτικά, τα φάρμακα, η ηλικία, η διατροφή, η κατανάλωση αλκοόλ, το κάπνισμα, η διάθεση, η άσκηση και ο τρόπος ζωής.

Αυτοί οι κυτταρικοί μηχανισμοί επιδρούν πάνω στην την υγεία και επηρεάζουν τη γενικότερη κατάσταση του ανθρώπινου οργανισμού στην ηλικιακή του πορεία, συμμετέχοντας και προκαλώντας: καρκίνο, αυτοάνοσες νόσους, νευρολογικές και ψυχιατρικές καταστάσεις ή νόσους, διαβήτη τύπου ΙΙ και άλλες ασθένειες.

Επιγενετική επίδραση της διατροφής και του περιβάλλοντος

Σύμφωνα με πρόσφατη έρευνα στο Πανεπιστήμιο του Cambridge, η κακή διατροφή της μητέρας στη διάρκεια της εγκυμοσύνης προδιαθέτει για νοσήματα του σχετίζονται με την ηλικία. Όταν, δηλαδή, το παιδί που θα γεννηθεί γίνει μεσήλικας, θα υποφέρει με μεγαλύτερη πιθανότητα από προβλήματα υγείας που συνήθως εμφανίζονται στη μέση ηλικία, όπως ο διαβήτης τύπου 2 και οι παθήσεις της καρδιάς.

Όπως έδειξε, άλλωστε, μια σειρά από πρωτοποριακές έρευνες των τελευταίων ετών, οι επιγενετικές διεργασίες, οι οποίες εκδηλώνονται με την τροποποίηση της έκφρασης των γονιδίων, αποτελούν πιθανότατα την «απάντηση» ενός οργανισμού στις εξωγενείς πιέσεις ή σε σημαντικές περιβαλλοντικές αλλαγές. Διαπίστωσαν, μάλιστα, ότι αυτές οι τροποποιήσεις στην έκφραση των γονιδίων μπορεί να είναι πρόσκαιρες και μεταβατικές, ενδέχεται όμως να είναι πολύ πιο μόνιμες και ενδεχομένως κληρονομικές.

Η πρόσφατη αναγνώριση της σημασίας των επιγενετικών αλλαγών έχει ασύλληπτες επιπτώσεις για τη ζωή και την υγεία των ανθρώπων. Για παράδειγμα, η Αμερικανική Εταιρεία για την Έρευνα του Καρκίνου (AACR) έχει δημοσιεύσει πολλές στατιστικές έρευνες που δείχνουν σαφώς ότι πάνω από το 60% των διαγνωσμένων νεοπλασιών δεν οφείλεται σε γενετικούς παράγοντες αλλά στον τρόπο ζωής των ασθενών.

Ήδη, πραγματοποιείται μια μεγάλης κλίμακας μελέτη, που λέγεται EPIC, σε 500.000 ανθρώπους σε 10 ευρωπαϊκές χώρες, για να αποκαλύψει την σύνδεση μεταξύ της επίδρασης της διατροφής στη μεθυλίωση και, κατ’ επέκταση, στην πιθανότητα εμφάνισης καρκίνου.

Την επιγενετική επίδραση της διατροφής επιβεβαιώνει και έρευνα σε ποντίκια, που έδειξε ότι η διατροφή της μητέρας δρα επιγενετικά στην ανάπτυξη του χρώματος στους απογόνους. Το χρώμα στο τρίχωμα και οι εναλλαγές του εξαρτώνται από την ένταση της μεθυλίωσης του προαγωγέα IAP στο σχετικό γονίδιο, αρχίζοντας από το κιτρινωπό έως το φυσιολογικό χρώμα των ποντικιών. Έτσι η απομεθυλίωση οδηγεί στο κιτρινωπό χρώμα και στην ανάπτυξη παχυσαρκίας και όγκων.

Επιγενετικοί μηχανισμοί Services

Η μεθυλίωση του DNA

Στοχεύει στο DNA και ενεργοποιεί ή καταστέλλει γονίδια. Είναι ένας τύπος χημικής τροποποίησης του DNA, που μπορεί να κληρονομηθεί και να αφαιρεθεί στη συνέχεια χωρίς αλλαγή της αρχικής ακολουθίας DNA. Η μεθυλίωση DNA περιλαμβάνει την προσθήκη μιας μεθυλικής ομάδας στο DNA. Λαμβάνει χώρα πάντα στον άνθρακα 5 της κυτοσίνης (ένα από το δομικά συστατικά του DNA), με επίδραση τη μείωση της έκφρασης γονιδίων. Η μεθυλίωση του DNA στη θέση 5 της κυτοσίνης έχει βρεθεί σε κάθε σπονδυλωτό που εξετάσθηκε. Ο βαθμός της μεθυλίωσης, δηλαδή ο συνολικός αριθμός των μεθυλικών ομάδων που προσκολλούνται η μία μετά την άλλη (κατά σειρά) στην βάση αυτή, καθορίζει και την δράση άρα και την έκφραση του γονιδίου. Όταν προσκολληθούν 4 μεθυλομάδες διακόπτεται πλήρως η έκφραση του γονιδίου. Όσο πιο ισχυρά μεθυλοποιημένη είναι αυτή η βάση τόσο πιο αδύνατη είναι η έκφραση του συνόλου του γονιδίου στο οποίο βρίσκεται.

Η ακετυλίωση των ιστόνων

Η ακετυλίωση στοχεύει στο DNA και απενεργοποιεί μεγάλα τμήματα του κυτταρικού DNA, προκαλώντας αδυναμία από-πακεταρίσματος του DNA και απενεργοποίηση πλειάδας γονιδίων (το DNA είναι πακεταρισμένο στον πυρήνα και για να γίνει η διαδικασία της αντιγραφής και μεταγραφής του, χρειάζεται να από-πακεταριστεί).

Οι ιστόνες είναι μικρές, θετικά φορτισμένες πρωτεΐνες [ονομάζονται Η2Α, Η2Β, Η3, Η4] που συνδέονται στο DNA για τη συμπίεσή του (πακετάρισμα) και τον έλεγχο της γονιδιακής έκφρασης. Η επιγενετική διαφοροποίηση των πρωτεϊνών αυτών λαμβάνει χώρα σε συγκεκριμένη περιοχή της πρωτεϊνικής αλυσίδας, μειώνοντας την ενεργοποίηση σημαντικής πλειάδας γονιδίων.

Ο βαθμός μεθυλίωσης μειώνει σταδιακά έως και δραστικά τη λειτουργία των γονιδίων. Σε απόλυτη αντιστοιχία βρίσκεται και ο βαθμός ακετυλίωσης των ιστονών, με την αδυναμία που προκαλείται στην αποκλιμάκωση του DNA. Τόσο ανεξάρτητα όσο και συνδυαζόμενοι οι δύο αυτοί παράγοντες επιδρούν σταδιακά μέχρι και στην πλήρη παύση της έκφρασης των γονιδίων. 

a. Κάθε νουκλεόσωμα είναι ένα οκταμερές ιστονών που αποτελείται από 1 τετραμερές ιστονών Η3-Η4 και 2 διμερή των ιστονών Η2Α-Η2Β. Το αμίνο-τέλος αυτών έρχεται σε αλληλεπίδραση και συνδέεται με το DNA, ενώ αποτελεί παράλληλα το χώρο όπου συντελείται η επιγενετική τροποποίηση (ακετυλίωση).

b. Κρυσταλική δομή Ιστονών-DNA σε κάθετη διατομή.

c. Τα πρώτα 10 αμινοξέα του αμίνο-τέλους της Η3 με τις θέσης ακετυλίωσης, φωσφορυλίωσης και μεθυλίωσης. Από το βαθμό αυτής της επιγενετικής αλλαγής εξαρτάται η μεταγραφή ενός γονιδίου.

Βιβλιογραφία Services

Για τα άρθρα της κατηγορίας “Γενετική” χρησιμοποιήθηκαν οι παρακάτω πηγές:

1. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. R. Jaenisch and A. Bird, Nat Genet. 2003 Mar;33 Suppl:245-54

2. Genes, genetics, and epigenetics: a correspondence. Wu, C.-Τ. and J. R. Morris  Science 2001 Aug 10;293(5532):1103-5.2001

3. Increased tau phosphorylation on mitogen-activated protein kinase consensus sites and cognitive decline in transgenic models for Alzheimer’s disease and FTDP-17: evidence for distinct molecular processes underlying tau abnormalities. Lambourne SL et al, Mol Cell Biol. 2005 Jan;25(1):278-93.

4. National Institute of Health, USA, 05/2011

5. Epigenetic mechanisms in memory formation. Levenson J. and Sweatt D., Nat Rev Neurosci. 2005 Feb;6(2):108-18

6. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Rudolf Jaenisch & Adrian Bird, Nat Genet. 2003 Mar;33 Suppl:245-54

7. Maternal diet and aging alter the epigenetic control of a promoter-enhancer interaction at the Hnf4a gene in rat pancreatic islets.Ιonel Sandovici et al., Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5449-54

8. A large-scale study of diet and cancer called EPIC encompassing half a million people in ten European countries, to reveal some of the links between methylation modifiers in the diet and cancer risk.  National Institute of Health, Epigenetics Diet Plan for Cancer Prevention, Cancer Prevention — On March 14, 2011

9. Role of meal carbohydrate content for the imbalance of plasma amino acids in patients with liver cirrhosis. Schulte-Frohlinde E, Wagenpfeil S, Willis J, Lersch C, Eckel F, Schmid R, Schusdziarra V. J Gastroenterol Hepatol. 2007 Aug;22(8):1241-8.

10. L-arginine and cardiovascular system. Cylwik D, Mogielnicki A, Buczko W. Pharmacol Rep. Jan-Feb 2005;57(1):14-22.

11. Plasma concentrations of excitatory amino acids serine, glycine, taurine and histidine in major depression. Altamura C, Maes M, Dai J, Meltzer HY. Eur Neuropsychopharmacol. 1995;5 Suppl:71-75.

12. Tryptophan depletion, serotonin, and depression: where do we stand? Neumeister A. Psychopharmacol Bull. 2003;37(4):99-115.

13. Pharmacogenetics and individual variation in the range of amino acid adequacy: the biological aspects. Caldwell J. J Nutr. Jun 2004;134(6 Suppl):1600S-1604S; discussion 1630S-1632S, 1667S-1672S.

14. Metabolomics and its potential for assessment of adequacy and safety of amino acid intake. Noguchi Y, Sakai R, Kimura T. J Nutr. Jun 2003;133(6 Suppl 1):2097S-2100S.

15. Effect of cortisol on energy expenditure and amino acid metabolism in humans. Brillon DJ, Zheng B, Campbell RG, Matthews DE. Am J Physiol. 1995;268(3 Pt 1):E501-513.

16. Protein requirements and supplementation in strength sports. Phillips SM. Nutrition. Jul-Aug 2004;20(7-8):689-695.

17. Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity. Maes M, Verkerk R, Vandoolaeghe E, Lin A, Scharpe S. Acta Psychiatr Scand. Apr 1998;97(4):302-308.

18. Plasma amino acid concentrations in patients with amnestic mild cognitive impairment or Alzheimer disease. Ravaglia G, Forti P, Maioli F, et al. Am J Clin Nutr. Aug 2004;80(2):483-488.

19. Contribution of dietary protein and inorganic sulfur to urinary sulfate: toward a biomarker of inorganic sulfur intake. Magee EA, Curno R, Edmond LM, Cummings JH. Am J Clin Nutr. Jul 2004;80(1):137-142.

20. Macronutrient intakes as determinants of dietary protein and amino acid adequacy. Millward DJ. J Nutr. Jun 2004;134(6 Suppl):1588S-1596S.

21. Low plasma glutamine in combination with high glutamate levels indicate risk for loss of body cell mass in healthy individuals: the effect of N- acetyl-cysteine. Kinscherf R, Hack V, Fischbach T, et al. J Mol Med. 1996;74(7):393-400.

22. Co-existence of GABA and Glu in the hippocampal granule cells: implications for epilepsy. Gutierrez R, Heinemann U. Curr Top Med Chem. 2006;6(10):975-978.

23. Response of alanine metabolism in humans to manipulation of dietary protein and energy intakes. Yang RD, Matthews DE, Bier DM, Wen ZM, Young VR. Am J Physiol. Jan 1986;250(1 Pt 1):E39-46.

24. Ethanolamine and phosphoethanolamine inhibit mitochondrial function in vitro: implications for mitochondrial dysfunction hypothesis in depression and bipolar disorder. Modica-Napolitano JS, Renshaw PF. Biol Psychiatry. Feb 1 2004;55(3):273-277.

25. Plasma proline and leucine kinetics: response to 4 wk with proline-free diets in young adults. Hiramatsu T, Cortiella J, Marchini JS, Chapman TE, Young VR. Am J Clin Nutr. 1994;60(2):207-215.

26. Gender-related differences in carnosine, anserine and lysine content of murine skeletal muscle. Penafiel R, Ruzafa C, Monserrat F, Cremades A. Amino Acids. Feb 2004;26(1):53-58.

27. Clinical usefulness of urinary 3-methylhistidine excretion in indicating muscle protein breakdown.Elia M, Carter A, Bacon S, Winearls CG, Smith R. Br Med J (Clin Res Ed). 1981;282(6261):351-354.

27. Plasma AA and DHA levels are not compromised in newly diagnosed gestational diabetic women. Thomas B, Ghebremeskel K, Lowy C, et al. Eur J Clin Nutr. 2004;58:1492-1497.

28. Elevated concentrations of plasma omega-3 polyunsaturated fatty acids among Alaskan Eskimos. Parkinson AJ, Cruz AL, Heyward WL, et al. Am J Clin Nutr. 1994;59:384-388.

29. Fatty acids in plasma and red cell membranes in normal humans. Manku MS, Horrobin DF, Huang YS, Morse N. Lipids. 1983;18:906-908.

30. n-3 Fatty acid requirements of the newborn. Innis SM. Lipids. 1992;27:879-885.

31. Essential fatty acid deficiency associated with the use of a medium-chain-triglyceride infant formula in pediatric hepatobiliary disease. Pettei MJ, Daftary S, Levine JJ. Am J Clin Nutr. 1991;53:1217-1221.

32. Essential fatty acid deficiency in parenterally fed preterm infants. Lee EJ, Simmer K, Gibson RA. J Paediatr Child Health. 1993;29:51-55.

33. Essential Fatty Acids in Health and Disease: Using the Essential Fats omega-3 and omega-6 to improve Your Health, Lower Your Cholesterol and Prevent Cardiovascular Disease: What the FDA and USDA Failed to Tell You about Essential and Trans Fatty acids. Siguel EN. 1st ed. Brookline, MA: Nutrek Press; 1994. 

34. A randomized trial of different ratios of linoleic to alpha-linolenic acid in the diet of term infants: effects on visual function and growth. Makrides M, Neumann MA, Jeffrey B, et al. Am J Clin Nutr. 2000;71:120-129.

35. The effects of unsaturated fatty acids on Helicobacter pylori in vitro. Khulusi S, Ahmed HA, Patel P, et al. J Med Microbiol. 1995;42:276-282.

36. Effects of eicosapentaenoic and docosahexaenoic acid on cell growth and prostaglandin E and leukotriene B production by a human breast cancer cell line (MDA-MB-231). Noguchi M, Earashi M, Minami M, et al. . Oncology. 1995;52:458-464.

37. Serum omega-3 fatty acids are associated with variation in mood, personality and behavior in hypercholesterolemic community volunteers. Conklin SM, Harris JI, Manuck SB, Psychiatry Res. 2007 Jul 30;152(1):1-10. Epub 2007 Mar 23.

38. Upregulation of transcobalamin (TC) and its receptor in colonic inflammation: Effect of homocysteine. Kalra S, Ahuja R, Binion DG, Seetharam S, Seetharam B. Am J Physiol Gastrointest Liver Physiol. 2007 Jul 19.

39. B vitamins and plasma homocysteine concentrations in an urban and rural area of Costa Rica. Kim MK, Ordovas JM, Selhub J, Campos H. J Am Coll Nutr. 2003 Jun;22(3):224-31.

40. Determinants of plasma total homocysteine concentration in the Framingham Offspring cohort. Jacques PF, Bostom AG, Wilson PW, Rich S, Rosenberg IH, Selhub J. Am J Clin Nutr. 2001 Mar;73(3):613-21.

41. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA. Am J Clin Nutr. 2004 Dec;80(6):1611-7.

42. Homocysteine, B vitamins, and the incidence of dementia and cognitive impairment: results from the Sacramento Area Latino Study on Aging. Haan MN, Miller JW, Aiello AE, Whitmer RA, Jagust WJ, Mungas DM, Allen LH, Green R. Am J Clin Nutr. 2007 Feb;85(2):511-7.

43. Plasma homocysteine levels and late outcome in patients with unstable angina. Vizzardi E, Nodari S, Fiorina C, Metra M, Dei Cas L. Cardiology. 2007;107(4):354-9. Epub 2007 Feb 1.

44. Hyperhomocysteinemia: a novel risk factor for erectile dysfunction. Demir T, Comlekçi A, Demir O, Gülcü A, Calýpkan S, Argun L, Seçil M, Yepil S, Esen A Metabolism. 2006 Dec;55(12):1564-8. 

45. Moderate hyperhomocysteinemia and early-onset central retinal vein occlusion. Lattanzio R, Sampietro F, Ramoni A, Fattorini A, Brancato R, D’Angelo A. Retina. 2006 Jan;26(1):65-70.

46. Plasma homocysteine and polycystic ovary syndrome: the missed link. Badawy A, State O, El Gawad SSh, El Aziz OA. Eur J Obstet Gynecol Reprod Biol. 2007 Mar;131(1):68-72. Epub 2006 Nov 22.

47. Total plasma homocysteine, folate, and vitamin B12 status in healthy Iranian adults: the Tehran homocysteine survey (2003-2004)/a cross-sectional population based study. Fakhrzadeh H, Ghotbi S, Pourebrahim R, Nouri M, Heshmat R, Bandarian F, Shafaee A, Larijani B. BMC Public Health. 2006 Feb 13;6:29. 

48. Associations between homocysteine, bone turnover, BMD, mortality, and fracture risk in elderly women. Gerdhem P, Ivaska KK, Isaksson A. J Bone Miner Res. 2007 Jan;22(1):127-34.

49. Potential role of ubiquinone (coenzyme Q10) in pediatric cardiomyopathy. Bhagavan HN, Chopra RK. Clin Nutr. Jun 2005;24(3):331-338.

50. Cofactor treatment improves ATP synthetic capacity in patients with oxidative phosphorylation disorders. Marriage BJ, Clandinin MT, Macdonald IM, Glerum DM. Mol Genet Metab. Apr 2004;81(4):263-272.

51. The expanding phenotype of mitochondrial myopathy.DiMauro S, Gurgel-Giannetti J. Curr Opin Neurol. Oct 2005;18(5):538-542.

52. Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. Beal MF. J Bioenerg Biomembr. Aug 2004;36(4):381-386.

53. Coenzyme Q10 serum levels in Huntington’s disease. Andrich J, Saft C, Gerlach M, et al. J Neural Transm Suppl. 2004(68):111-116.

54. Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Ogasahara S, Engel AG, Frens D, Mack D. Proc Natl Acad Sci U S A. Apr 1989;86(7):2379-2382.

55. Efficacy of coenzyme Q10 for improved tolerability of cancer treatments: a systematic review. Roffe L, Schmidt K, Ernst E. J Clin Oncol. Nov 1 2004;22(21):4418-4424.

56. Considerations for supplementing with coenzyme Q10 during statin therapy. Levy HB, Kohlhaas HK. Ann Pharmacother. Feb 2006;40(2):290-294.

57. Tolerance of high-dose (3,000 mg/day) coenzyme Q10 in ALS. Ferrante KL, Shefner J, Zhang H, et al. Neurology. Dec 13 2005;65(11):1834-1836.

58. Radical mechanisms in relation to tissue injury. Slater, T.F., et al., Free Proc Nutr Soc, 46(1). 1-12, 1987.

59. Mechanisms and consequences of lipid peroxidation in biological systems. Sevanian, A. and P. Hochstein, Annu Rev Nutr, 5. 365-90, 1985.

60. Serum lipid peroxide in cerebrovascular disorders determined by a new colorimetric method. Satoh, K., Clin Chim Acta, 90(1). 37-43, 1978.

61. The effect of alpha-tocopherol and ascorbic acid on the serum lipid peroxide level in elderly people. Wartanowicz, M., et al., Ann Nutr Metab, 28(3). 186-91, 1984.

62. Clinical oxidation parameters of aging. Voss P, Siems W. Free Radic Res. 2006 Dec;40(12):1339-49.

63. Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Kesavulu MM, Giri R, Kameswara Rao B, Apparao C. Diabetes Metab. 2000 Nov;26(5):387-92.

64. Plasma lipid peroxides: relationships to cardiovascular risk factors and prevalent cardiovascular disease. Rumley AG, Woodward M, Rumley A, Rumley J, Lowe GD. QJM. 2004 Dec;97(12):809-16.

65. The multifaceted and widespread pathology of magnesium deficiency. Johnson S. Med Hypotheses. 2001;56(2):163-170.

66. Moderate magnesium deprivation results in calcium retention and altered potassium and phosphorus excretion by postmenopausal women. Nielsen FH, Milne DB, Gallagher S, Johnson L, Hoverson B. Magnes Res. 2007 Mar;20(1):19-31.

67. Protective effects of high dietary potassium: nutritional and metabolic aspects. Demigne C, Sabboh H, Remesy C, et al. J Nutr. 2004;134(11):2903-2906.

68. Plasma and red blood cell zinc in cystic fibrosis. Akanli L, Lowenthal DB, Gjonaj S, et al. Pediatr Pulmonol. 2003;35(1):2-7.

69. Is there a role for copper in neurodegenerative diseases? Cerpa W, Varela-Nallar L, Reyes AE, et al. Mol Aspects Med. 2005;26(4-5):405-420.

70. Plasma and erythrocyte manganese concentrations. Influence of age and acute myocardial infarction. Arnaud J, Bourlard P, Denis B, et al. Biol Trace Elem Res. 1996;53(1-3):129-136.

71. Calcium, magnesium, and other elements in the red blood cells and hair of normals and patients with premenstrual syndrome. Shamberger RJ. Biol Trace Elem Res. 2003;94(2):123-129.

72. Blood indices of selenium and mercury, and their correlations with fish intake, in young people living in Britain. Bates CJ, Prentice A, Birch MC, et al. Br J Nutr. 2006;96(3):523-531.

73. Clinical studies on chromium picolinate supplementation in diabetes mellitus–a review. Broadhurst CL, Domenico P. Diabetes Technol Ther. 2006;8(6):677-687.

74. Asthma and chemical bronchitis in vanadium plant workers. Irsigler GB, Visser PJ, Spangenberg PA. Am J Ind Med. 1999;35(4):366-374.

75. Application of Metabolomics to Cardiovascular Biomarker and Pathway Discovery, Gregory D. Lewis, Aarti Asnani, and Robert E. Gerszten, J. Am. Coll. Cardiol. 2008;52;117-123.

76. Clinical Applications ofMetabolomics in Oncology: A Review, Jennifer L. Spratlin,1NatalieJ. Serkova, and S. Gail Eckhardt, Clin Cancer Res 2009;15(2) January 15, 2009.

77. Inflammatory Multiple-Sclerosis Plaques Generate Characteristic Metabolic Profiles in Cerebrospinal Fluid, Norbert W. Lutz1, Ange` le Viola1, Irina Malikova, Sylviane Confort-Gouny, Bertrand Audoin2, Jean-Philippe Ranjeva, Jean Pelletier, Patrick J. Cozzon, PLoS ONE | www.plosone.org 2 July 2007, Issue 7, e595.

78. Merging transcriptomics and metabolomics – advances in breast cancer profiling, Eldrid Borgan, Beathe Sitter, Ole Christian Lingjærde, Hilde Johnsen, Steinar Lundgren, Tone F Bathen,Therese Sørlie, Anne-Lise Børresen-Dale, Ingrid S Gribbestad, BMC Cancer 2010, 10:628.

79. Metabolic Footprint of Diabetes: A Multiplatform Metabolomics Study in an Epidemiological Setting, Karsten Suhre, Christa Meisinger, Angela Doering, Elisabeth Altmaier, Petra Belcredi, Christian, Gieger, David Chang, Michael V. Milburn, Walter E. Gall, Klaus M. Weinberger, Hans-Werner Mewes, Martin Hrabe´ de Angelis, H.-Erich Wichmann, Florian Kronenberg, Jerzy Adamski, Thomas Illig, November 2010, Volume 5, Issue 11, e13953.

80. Metabolic Profiles of Cancer Cels, Julian L. Griffin and John P. Shockcor, Cancer, Volume 4, July 2004, 551-561.

81. Metabolic profiling in heart disease, David J. GraingerM, Heart Metab. 2006; 32:22–25.

82. Metabolic profiling of Parkinson’s disease: evidence of biomarker from gene expression analysis and rapid neural network detection, Shiek SSJ Ahmed, Winkins Santosh, Suresh Kumar and Hema T Thanka Christlet, Journal of Biomedical Science 2009, 16:63 doi:10.1186/1423-0127-16-63.

83. Metabolomic Characterization of Human Prostate Cancer Bone Metastases Reveals Increased Levels of Cholesterol, Elin Thysell, Izabella Surowiec, Emma Ho rnberg, Sead Crnalic, Anders Widmark, Annika Johansson, Par Stattin, Anders Bergh, Thomas Moritz, Henrik Antti1., Pernilla Wikstrom, PLoS ONE, December 2010, Volume 5, Issue 12, e14175.

84. Toward Metabolomic Signatures of Cardiovascular Disease, Gregory D. Lewis, MD; Robert E. Gerszten, MD, Circ Cardiovasc Genet 2010;3;119-121.

85. Metabolomics in Early Alzheimer’s Disease: Identificationof Altered Plasma Sphingolipidome Using Shotgun Lipidomics, Xianlin Han, Steve Rozen, Stephen H. Boyle, Caroline Hellegers, Hua Cheng, James R. Burke, Kathleen A. Welsh-Bohmer, P. Murali Doraiswamy, Rima Kaddurah-Daouk, PLoS ONE, July 2011, Volume 6, Issue 7, e21643.

86. Metabolomics Applied to Diabetes Research Moving From Information to Knowledge, James R. Bain, Robert D. Stevens, Brett R. Wenner, Olga Ilkayeva, Deborah M. Muoio, and Christopher B. Newgard, Diabetes, Vol. 58, November 2009.

87. Metabolomic profiling to develop blood biomarkers for Parkinson’s disease, Mikhail Bogdanov Wayne R. Matson, Lei Wang, Theodore Matson, Rachel Saunders-Pullman, Susan S. Bressman and M. Flint Beal, Brain (2008), 131, 389-396.

88. Concepts of genetics W.S. Klug, M.R. Cummings, C.A. Spencer, M.A. Palladino, Pearson Higher Ed, 2011.

89. Metabolomics as a tool for cardiac research, J.L. Griffin, H. Atherton, J. Shockcor, L. Atzori,  Nat. Rev. Cardiol. 8 (2011) 630–643

90. Metabolomics: a new era in cardiology?  G.Mercuro, P.P. Bassareo,M. Deidda, C. Cadeddu, L. Barberini, et al., J. Cardiovasc. Med. (Hagerstown) 12 (2011) 800–805.   

91. Systematic functional analysis of the yeast genome S.G. Oliver, M.K. Winson, D.B. Kell, F. Baganz, Trends Biotechnol. 16 (1998) 373–378.

92. Distinct metabolomic signatures are associated with longevity in humans, Chen et al., NATURE COMMUNICATIONS | 6:6791 | DOI: 10.1038/ncomms7791 |www.nature.com/naturecommunications.

93. Metabolomics: A Global Biochemical Approach to the Study of Central Nervous System Diseases, Rima Kaddurah-Daouk and K Ranga Rama Krishnan, Neuropsychopharmacology REVIEWS (2009) 34, 173–186.

94. Metabolomics enables precision medicine: ‘‘A White Paper, Community Perspective’’, Metabolomics (2016) 12:149.

95. The Emerging Field of Quantitative Blood Metabolomics for Biomarker Discovery in Critical Illnesses, Natalie J. Serkova et al., Concise Clinical Review, AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE VOL 184, 647-655.

96. Clinical Applications of Metabolomics in Oncology: A Review, Jennifer L. Spratlin et al., Clin Cancer Res. 2009 January 15; 15(2): 431–440. doi:10.1158/1078-0432.CCR-08-1059.

97. A community-driven global reconstruction of human metabolism, Ines Thieleet al., Nature Biotechnology, Received 7 September 2012; accepted 19 December 2012; published online 3 March 2013; doi:10.1038/nbt.2488.

98. A network analysis of cofactorprotein interactions for analyzing associations between human nutrition and diseases, Marie Pier Scott-Boyer et al., Nature, 6:19633 | DOI: 10.1038/srep19633.